

Eccentric Screw Pumps

Series AED2N Design ID

Application

For pumping liquid to highly viscous, neutral or aggressive, uncontaminated or abrasive liquids, liquids containing gases or which tend to froth also with fibrous and solid material.

Waste water and waste water treatment engineering, the chemical and petro-chemical industries, the paper and cellulose industries, the soap and fats industry, the paint industry, the food and beverage industry, the plastics industry, ceramics, agriculture, the sugar industry and shipbuilding.

Operation

Rotary self-priming, two-stage positive displacement pump. The pumping elements are the rotating eccentric screw (rotor) and the fixed stator. In any cross sectional plane, the elements are in contact with one another at three points and along the length of the elements these points form three lines of seal. The material contained in the sealed enclosed cavities which are formed as the rotor turns is displaced axially and with complete continuity from the suction to the delivery end of the pump. Despite the fact that the rotor rotates, no turbulence is produced. The constant volume of the enclosed cavities means that there are no pressurizing forces and thus guarantees a low-surge pumping action which is not at all severe on the material being pumped.

Design features

The outlet section, stator and suction casing are held together by external tie rods (clamping screws). The suction casings are designed to have a particularly large flow section. The sizes 150 to 7800 are available of grey cast iron with staggered cleaning ports. The stator which is vulcanized into a tubular casing is provided at both ends with external collars vulcanized to it. These provide a safe seal from the suction casing and outlet section and also protect the stator casing against corrosion.

Between the suction casing and bearing housing is situated an interchangeable housing for a stuffing box or mechanical seal (pumps can be converted retrospectively to a different type of seal). The sealing housings (shaft seals) are easily accessible as the complete bearing bracket can be withdrawn from the drive shaft without any further disassembly of the pump.

The drive shaft is carried in bearings in the bearing housing. The drive torque is transmitted to the rotor via the drive shaft and a coupling rod. The coupling rod terminates at both ends in universal joints which are encapsulated to form a liquid-tight seal. These pin-type universal joints are of particularly simple and rugged design and are able to withstand the eccentric movement of the rotor without any difficulty.

Shaft seals

Shafts are sealed by uncooled, cooled or heated stuffing boxes or uncooled or cooled non-balanced single or double-acting mechanical seals which require no maintenance. The material pairings and designs are adapted to suit the particular operating conditions. For further details, see pages 4, 5.

In any given size of pump, the housings for the various types of stuffing boxes or mechanical seals are interchangeable with one another. The various parts of the housings for mechanical seals form a modular system and can be combined with one another without any difficulty should the pump be converted to a different type of mechanical seal.

Installation spaces for mechanical seals according to DIN 24 960 (except for double mechanical seals).

For further details, see pages 4, 5, 6 and 7.

Technical characteristics

The output, permitted speed range and drive power required can be taken from the selection chart on page 3 or from the separate individual pump characteristics.

				AED2N
Flow rate	Q	l/min	up to	7500
Temperature of liquid pumped	t	° C ①	up to	150
Differential pressure two stage	∆р	bar @	up to	16
Pump discharge pressure	p _d	bar 2	up to	16
Suction obtainable	ps	bar 3	up to	0.95
Viscosity	n	mPa∙s	up to	225,000 3
Permissible solids content	% b	y vol. ③	up to	60

The mentioned performance data are to be considered as a product and performance abstract only. The particular operating limits can be taken from the quotation or order acknowledgement.

Max. permissible grain sizes and fiber lengths

Pump size		38	75	150	0	300	560
max. grain size	mm	3	4	5		6.3	8
max. fiber length	mm	42	42	48		60	79
Pump size		1200	230	D	42	50	7800
max. grain size	mm	10	12.5		16		20
max. fiber length	mm	98	130		21	0	250

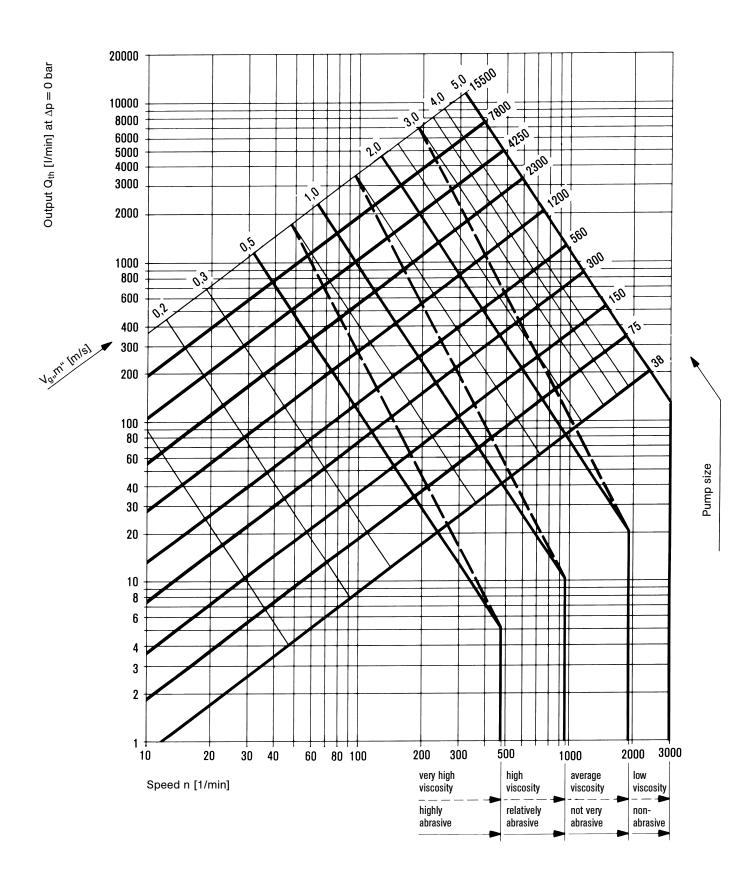
Increases in solid content and grain size mean that the speed of the pump must be reduced.

- ① Depending on the liquid pumped and the elastomers used.
- ② Depending on the sense of rotation and inlet pressure.
- ③ Depending on the pump size/design, speed and liquid pumped.
- ④ 12 bar for shaft with shaft wear sleeve.

Drivers

For possible types of drive see page 12. Drivers produced by any manufacturer can be used. Technical characteristics and dimensions should be taken from the documentation issued by the manufacturer.

Installation


AED pumps may be installed horizontally or vertically. Vertical installation with the shaft down is not permissible.

The pump and driver are connected together via a flexible coupling or an intermediate transmission (generally a V-belt drive) and are mounted on a common base plate. Dimensions of assemblies available on request.

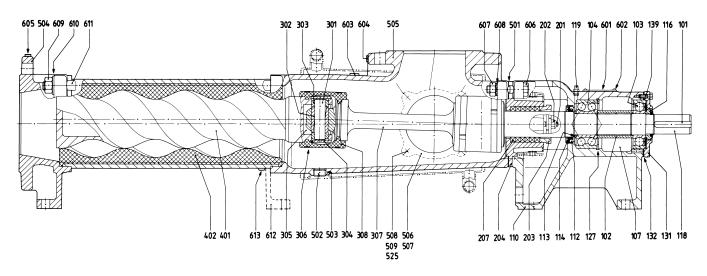
Performance chart

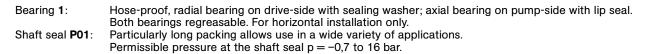
To give a rough indication of the appropriate pump size and speed as a function of the required output and the nature of the liquid to be pumped. $V_{g,m}$ ^m = mean rubbing speed of rotor in stator.

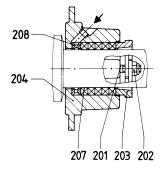
Sizes in AED2N series. Information on performance ranges not covered by the AED2N series can be found on the back cover of this brochure or in the separate brochures dealing with the other series. For exact performance data, see the individual pump characteristics.

Type coding

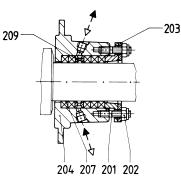
Fype coding Material code																			_		
Design features (geometry)																					
Гуре series — — — — — — — — — — — — — — — — — — —																					
						-									_						
	(1)	2	3	4	5	(67) (8)) (9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	2	9
		\bot	\bot			-	$\perp \perp$. 1	\perp	\bot	\bot	\bot	\bot		\bot	\perp	\bot	\bot	\bot		
		2			- ID						1	_		NC	1	1	_	V	V	62	
	AED	2	N	560	- <u>ID</u>	1	1 1	1	G	0	D	D	1	ZS	4	2	3	P	P	6ATT	V/2
Product																					
Number of stages ————————————————————————————————————																					
All the stages																					
Size																					
Design ————																					
Bearing design																					
ype of inlet/outlet connections ————— Branch position ————————————————————————————————————																					
Design of shaft seal —																					
Type of shaft																					
ype of shaft seal																					
leating/cooling jackets																					
tems jacketed																					
Design options																					
Suction and delivery casing, wetted, material Drive shaft, joint shaft, wetted, material																					
lotor matorial																					
itator material																					
Aterial of cover sleeves																					
Shaft seal materials																					
																				0.ATT	
																				6ATT	V/2I
		slidir	na r	nater	ial pa	irin	a nr	odu	ict-e	ide											
		Sprir	nas	and b	odv r	nat	erial	s —													
Example: double-acting mechanical seal —		Auxil	liarv	/ aasł	cets. r	roc	duct-	side	e —												
		Slidir	na r	nater	ial pa	irino	a. atı	mos	sphe	ric	side	e —									
		Auxil	liary	/ gasł	kets, a	tm	osph	eric	c sid	e –											

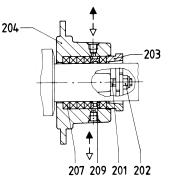

Explanatory notes on the type coding:


Position in type code	Designation	Design
1	Product	ALLWEILER eccentric screw pump - three-spindle
2	Number of stages	2 = two stage up to $\Delta p = 16$ bar
3	Mechanical execution	$N = rated for \Delta p = 16 bar$
4	Size	Possible sizes: 38, 75, 150, 300, 560, 1200, 2300, 4250, 7800 The numbers indicate the theoretic flow rate in I/min with n = 400 1/min and $\Delta p = 0$ bar
5	Design	ID = Industrial design with internal bearing
6	Bearing design	 hose-proof, radial bearing drive-side with sealing washer, axial bearing pump-side with lip seal. Both bearings regreasable. For horizontal installation hose-proof, radial bearing on both sides with sealing washer, axial bearing pump-side with lip seal. Axial bearing regreasable, radial bearing lifetime-lubricated. For vertical installation with shaft upwards
7	Type of inlet/outlet connection	1 = DIN flanges 3 = ANSI flanges X = Special-type flanges
8	Branch position	1, 2, 3, 4 – For the positions, please see drawing on page 9. Position 3 for size 38.2 not possbile.
9	Design of shaft seal	P = Stuffing box or other non-mechanical shaft seal G = Mechanical seal (mechanical shaft seal)
10	Type of shaft	0 = Shaft without shaft wear sleeve 1 = Shaft with shaft wear sleeve (only up to max. $\Delta p = 12$ bar) not possible with pump size 38.2.
1	Type of shaft seal	Stuffing boxesP01/P11 = Stuffing box of standard design (without lantern ring / without sealing flushing ring)P02/P12 = Stuffing box with flushing ringP03/P13 = Stuffing box with internal lantern ringP04/P14 = Stuffing box with external lantern ringP0X/P1X = Non-mechanical shaft seal of special design


11	Type of	Mechanical seals									
	shaft seal continued	for pump sizes	38	75	150	300	560	1200	2300	4250	7800
	X = design possible	Shaft diameter at the location of the shaft	t seal 250	30	35	43	53	60	75	90	110
	possible	G0K/G1K = individual mechanical seal, DIN 24960, design K, shape U	X①	х	Х	х	х	Х	Х	х	2
		GON/G1N = as above, however design N	X①	Х	Х	Х	Х	Х	Х	Х	-
		G0S/G1S = individual mechanical seal, DIN 24960, design K, shape U, rotating part with integrated locking devic and pump-sided throttling ring	x® X①	х	х	х	х	х	x	х	2
		G0T/G1T = as above, however design N	X①	Х	Х	Х	-	Х	Х	-	-
		G0Q/G1Q = individual mechanical seal, DIN 24960, design K, shape U with quenc	h X①	х	х	х	х	х	х	х	2
		G0D/G1D = double mechanical seal	12	2	2	2	2	2	2	2	2
		G0X/G1X = mechanical seal of special de	esign								
		1 not available with shaft wear sleeve			2 please	contac	t manu	facture	r for sea	al exec	ution
12	Heating/cooling jackets	D = Jackets for heating or cooling. Av Threaded connections for liquid in max. heating temperature +150°C	njections. Max	press	ure of he	ating/c		iquid 6	bar,		
(13)	Items jacketed	1=Suction casing jacketed2=Stuffing box P01/P11 jacketed12=Suction housing and stuffing boxX=Special design for other jackets	P01/P11 jacke	ted							
14	Design options	Stators (all elastomers) N M H T T									
		J = Rotor hollow C = Rotor hard-chrome-plated Y = Rotor ductile hard-chrome-plated Z = Rotor spray metal-coated	S W I X	= Co	ger on co upling ro her desig	d with		ameter	sleeve		
(15)	Suction and delivery casing, wetted, material	$\begin{array}{rcl} 1 &=& cast \mbox{ iron EN-GJL-250} \\ 3 &=& cast \mbox{ iron EN-GJL-250, hard rubbe} \\ 4 &=& 1.4408/1.4571 \\ A &=& 1.4462 \\ X &=& Special materials \end{array}$	er lined								
16	Drive shaft, joint shaft, wetted, material	$\begin{array}{rcl} 1 &=& 1.4021/1.4571\\ 2 &=& 1.4301/1.4571\\ 4 &=& 1.4571\\ A &=& 1.4462\\ X &=& {\rm Special materials, e.g. also for join} \end{array}$	nt parts								
17	Rotor material	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	= 1.4571 = Special I	nateria	als, e.g. o		= 1 etals, pla		aterials		
(18)	Stator material	butadiene (NR/BR)HPPPerbunan N (NBR)	= Viton (FF P = Perbuna hydroge = Silicon li	n/ nated (Pl E X	= E	Polyuret PDM Special r		ls	
(19)	Material of cover sleeves	PL = Perbunan light (NBR) V	HypalonViton (FfButyl rut	PM)		Х	= 8	Special r	nateria	ls	
20	Shaft seal materials	Stuffing box: 5846 = Ramie fiber with PTFE impregna 6426 = Aramid endless fiber with PTFE 6230 = Graphite-incorporated PTFE wit Mechanical seal:	impregnation,	asbest							
		Sliding material pairing	Spring and c	onstr. ı	naterials	Au	xiliary g	askets			
		1st point for single gasket 1st + 4th point for double gasket	2nd point					for singl points f			et
		 2 = CrMo cast iron/hard carbon 4 = Ceramics/hard carbon 5 = Hard metal/hard metal, highly wear-resistant 6 = Silicon carbide/silicon carbide highly wear-resistant, corrosion-resistant 7 = Silicon carbide/silicon carbide highly wear-resistant, highly corrosion-resistant X = Special materials 	$\begin{array}{llllllllllllllllllllllllllllllllllll$	C4	3	TTV TTS	= Neo $= Vito$ $= EP r$ $= Vito$ $= Vito$ $= Silic$	rubber on rubbe prene n rubber ①	er ①	F) double TFE- oated

Sectional drawing and parts list

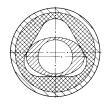



P02 Stuffing box with flushing ring

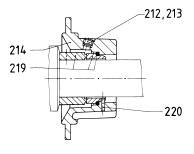
Suitable for highly abrasive liquids, with external flushing p = -0.7 to 12 bar

P03 Stuffing box with internal lantern ring

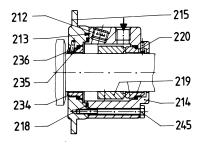
Suitable for uncontaminated liquids with internal liquid sealing or for abrasive liquids with external flushing p = -0.8 to 6.0 bar

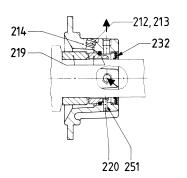


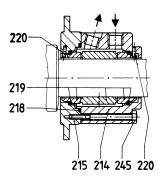
P04 Stuffing box with external lantern ring


For use where the external flushing liquid is not compatible with the pumped liquid or where the ingress of air is to be prevented p = -0.9 to 12 bar

Part No.	Denomination	Part No.	Denomination	Part No.	Denomination
101	Key	127	Retaining circlip	212	Screwed plug
102	Spacer sleeve	129	Distance ring	213	Sealing tape
103	Radial bearing	131	Bearing cover	214	Mechanical seal housing
104	Axial bearing	132	Gasket	215	Mechanical seal cover
107	Bearing grease	139	Hexagon head bolt	218	O-ring
110	Bearing housing	201	Stud	219	Mechanical seal
112	Lip seal	202	Self-locking nut	220	Retaining pin
113	Spacer ring	203	Gland half	232	Lip seal
114	Thrower	204	Stuffing box housing	234	Throat bushing
115	O-ring	206	Shaft wear sleeve	235	O-ring
116	Bearing nut	207	Stuffing box packing	236	Retaining pin
118	Drive shaft	208	Flushing ring	245	Hexagon head bolt
119	Grease nipple	209	Lantern ring	251	Sealing compound

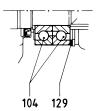



Geometry of pump elements series AED2N


GOK/GON Single acting mechanical seal, DIN 24960, K/N design, U shape. For application details consult manufacturer p = -0.5 to 16 bar

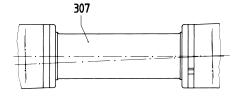
GOS/GOT Single acting mechanical seal, DIN 24 960, K/N design, U shape, rotating part with integrated locking device, with flushing liquid connection and pump-side throat bushing. For application details consult manufacturer p = -0.5 to 16 bar

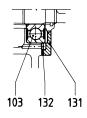
 $\begin{array}{l} \textbf{GOQ} \mbox{ Single acting mechanical seal,} \\ DIN 24 960, K \mbox{ design, U shape,} \\ with quench. \\ For application details consult \\ manufacturer \\ p = -0.5 \mbox{ to } 16 \mbox{ bar} \end{array}$



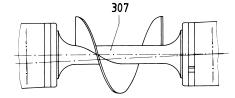
GOD Double acting mechanical seal, with sealing liquid connection. For application details consult manufacturer p = -0.95 to 16 bar

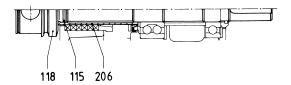
Part No.	Denomination	Part No.	Denomination	Part No.	Denomination
301	Coupling rod pin	504	Discharge casing	606	Hexagon head bolt
302 ①	Coupling rod bush	505	Suction casing	607	Hexagon nut
303	Guide bush	506	Suction casing cover	608	Locking washer
304	Retaining sleeve	507	Gasket	609	Hexagon nut
305	Joint grease	508	Stud	610	Washer
306	Clamping band	509	Hexagon nut	611	Tie rod
307	Coupling rod	525	Washer	612	Supporting foot
308	Cover sleeve	601	Name plate	613	Hexagon head bolt
401	Rotor	602	Dome-headed grooved pin		5
402	Stator	603	Instruction label		
501	Suction casing gasket		for commissioning		
502	Screwed plug	604	Suction label		
503	Sealing tape	605	Discharge label	 not applie 	cable for size 38


VM 785 GB/04.01 1001

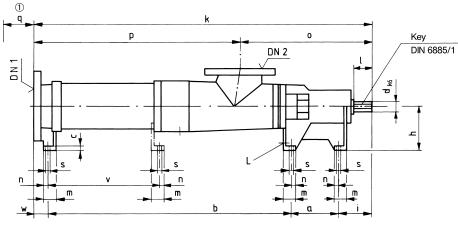


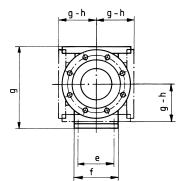
Bearing design 1 and 2:


for size AED2N 1200 and above axial bearing with two single-row angular contact ball bearings

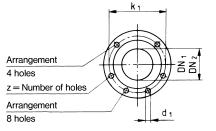

Coupling rod with large diameter sleeve (to minimize rag build-up)

Radial bearing design in case of bearing **2** (for vertical installation with shaft upwards only)

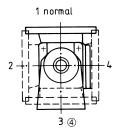

Auger on coupling rod



Shaft with shaft wear sleeve from size AED2N 75 and above for all shaft seal designs possible



Pump dimensions, auxiliary connections, possible branch positions, weights


Dimensions in mm, nominal widths of ANSI flanges (DN) in inches. Subject to alteration.

Sense of rotation: normally counter-clockwise as seen from the, driving side with $DN_1 =$ outlet branch, $DN_2 =$ suction branch, change of rotation possible, then, $DN_1 =$ suction branch, $DN_2 =$ outlet branch

Series Size					1	1	1	Pump dir	nensions	;	I	1	1	1	1	1	Max. weight
0120	a	b	C	d	е	f	h	i	I	m	n	0	q	s	L	v	kg
AED2N 38-ID	114	530	10	18	75	95	90	65	30	30	11	273	230	9	Rp 3/8	-	20
AED2N 75-ID	122	650	10	22	85	105	100	79	40	30	11	309	305	9	Rp 3/8	-	30
AED2N 150-ID	140	820	13	28	100	125	125	95	50	38	13	371	395	11,5	Rp 1/2	-	53
AED2N 300-ID	151	991	15	32	114	140	140	106	60	40	14	411	500	14	Rp ³ / ₄	-	78
AED2N 560-ID	171	1198	16	42	132	168	160	118	65	50	19	480	625	18	Rp ³ / ₄	-	128
AED2N 1200-ID	190	1517	16	48	164	200	180	130	75	50	19	532	830	18	Rp 3/4	-	190
AED2N 2300-ID	220	1876	21	60	200	245	225	158	90	63	23	644	1040	22	Rp 1	1147	360
AED2N 4250-ID	266	2319	24	75	245	290	250	182	110	65	23	769	1270	22	Rp 1	1390	595
AED2N 7800-ID	320	2833	29	95	290	350	280	215	130	80	30	922	1540	27	Rp 1	1711	921

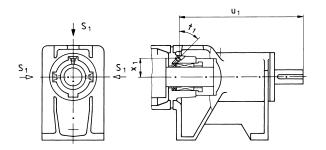
① Space required for stator replacement

Possible branch positions as seen from the drive

④ not for series/size AED2E 38-ID

VM 785 GB/09.98 2000

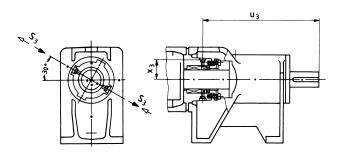
			Flange di	mensions			
DII	N 2501, P	N 16 5		ANSI B16.	1/16.5, CI	ass 125/1	50 3
DN ₁ /DN ₂	k ₁	d ₁	z	DN ₁ /DN ₂	k ₁	d ₁	z
40	110	18	4	1 ¹ / ₂	98,4	15,9	4
50	125	18	4	2	120,6	19	4
65	145	18	4	2 ¹ / ₂	139,7	19	4
80	160	18	8	3	152,4	19	4
100	180	18	8	4	190,5	19	8
125	210	18	8	5	215,9	22,2	8
150	240	22	8	6	241,3	22,2	8
200	295	22	12	8	298,4	22,2	8
250	355	26	12	10	361,9	25,4	12

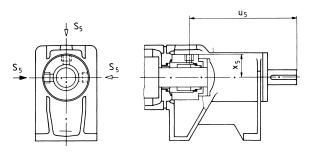


Series						Mat	ing dime	nsions f	or suctio	on and d	ischarge	connec	tions					
Size		Flang	es DIN 2	501, PN	16 (5)			Flanges	ANSI B1	6.1, Clas	s 125 3)		Flanges	ANSI B1	6.5, Clas	s 150 @	3)
	DN ₁	DN ₂	2 k	2 p	2 W	2 g	DN ₁	DN ₂	2 k	2 p	2 W	2 g	DN ₁	DN ₂	k	р	w	g
AED2N 38-ID	40	40	750	477	41	175	1 ¹ / ₂	1 ¹ / ₂	747	474	38	172	1 ¹ / ₂	1 ¹ / ₂	750	477	41	175
AED2N 75-ID	50	50	894	585	43	190	2	2	890	581	39	186	2	2	894	585	43	190
AED2N 150-ID	65	65	1095	724	40	230	2 1/ ₂	2 1/2	1094	723	39	229	2 1/ ₂	2 1/ ₂	1099	728	44	234
AED2N 300-ID	80	80	1292	881	44	260	3	3	1290	879	42	258	3	3	1295	884	47	263
AED2N 560-ID	100	100	1528	1048	41	300	4	4	1530	1050	43	302	4	4	1530	1050	43	302
AED2N 1200-ID	125	125	1881	1349	44	350	5	5	1881	1349	44	350	5	5	1881	1349	44	350
AED2N 2300-ID	150	150	2307	1663	53	425	6	6	2307	1663	53	425	6	6	2307	1663	53	425
AED2N 4250-ID	200	200	2829	2060	62	485	8	8	2829	2060	62	485	8	8	2829	2060	62	485
AED2N 7800-ID	250	250	3443	2521	75	550	10	10	3443	2521	75	550	10	10	3443	2521	75	550

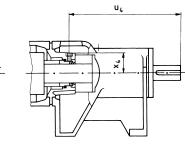

2 Where rubber-lined + 3 mm3 Sealing surface: stock finish

⑤ up to DN 100 sealing surface DIN 2526 shape C, machined as shape A from DN 125 sealing surface DIN 2526 shape A

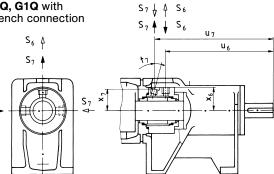

Position of auxiliary connections for shaft seals


P02, P12 with flushing ring

P03, P13 with internal lantern ring



P04, P14 with external lantern ring


GOS/GOT, G1S/G1T with flushing connection

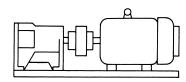
4 S۵ S4 S₄

GOQ, G1Q with quench connection

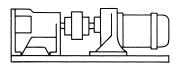
S 6

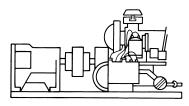
GOD, G1D with seal liquid connection

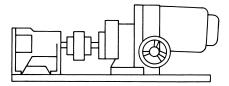
Series				Mating	dimensions a	uxiliary conne	ections for sha	aft seals			
Size		P02, P12 with	n flushing ring			,	vith internal rn ring		P04,	P14 with ext lantern ring	ernal
	S ₁ ©	u ₁	x ₁	t ₁	S ₂ 6	u ₂	x ₂	t ₂	S ₃ ©	u ₃	X3
AED2N 38-ID	M 8 x 1	195,5	28	42 °	M 8 x 1	188	30	20°	M 8 x 1	180,5	30,5
AED2N 75-ID	M 8 x 1	217	31,5	40°	M 8 x 1	211	32	20 °	M 8 x 1	202,5	33,5
AED2N 150-ID	Rp 1/8	255	38	42 °	Rp 1/ ₈	248	40	17°	Rp 1/8	236	39,5
AED2N 300-ID	Rp 1/8	279	42	42 °	Rp 1/ ₈	272	44	17°	Rp 1/8	261	43,5
AED2N 560-ID	Rp 1/8	316	52	42 °	Rp 1/ ₈	307	54	17°	Rp 1/8	292,5	54,5
AED2N 1200-ID	Rp ¹ / ₈	349	56	35°	Rp ¹ / ₈	338,5	57	13°	Rp ¹ / ₈	322,5	58
AED2N 2300-ID	Rp 1/4	416	67	35°	Rp ¹ / ₄	403	68,5	13°	Rp ¹ / ₄	383	69,5
AED2N 4250-ID	Rp 1/4	492	77	35°	Rp 1/4	474,5	79	13°	Rp 1/4	451	80
AED2N 7800-ID	Rp 1/4	588	94,5	35°	Rp 1/4	568,5	97	13°	Rp 1/4	542	97


Series				N	lating dime	ensions aux	ciliary connec	tions for sha	ft seals				
Size		T, G1S/G1T ng connect			Q, G1Q wit ch connect			GOD,	G1D with	seal liquid	connectior	1	
	S ₅ 6	u ₅	x 5	S ₄ ©	u ₄	x ₄	S ₆ ©	S ₇ 6	u ₆	u ₇	x ₆	x ₇	t ₇
AED2N 38-ID	Rp 1/4	157	34	Rp 1/ ₈	167	30,5	Rp 1/4	Rp 1/4	157	182,5	34	33	15°
AED2N 75-ID	Rp ¹ / ₄	179	38	Rp 1/ ₈	187,5	30,5	Rp 1/4	Rp 1/4	179	204,5	38	36,5	15°
AED2N 150-ID	Rp 1/4	220,5	41,5	Rp 1/ ₈	230	33,5	Rp 1/4	Rp 1/4	220,5	245,5	41,5	40	15°
AED2N 300-ID	Rp ³ / ₈	241	48,5	Rp 1/ ₈	255	41	Rp 3/8	Rp ³ / ₈	241	266	48,5	47	15°
AED2N 560-ID	Rp ³ / ₈	280	56	Rp ¹ / ₈	287	54	Rp ³ / ₈	Rp ³ / ₈	280	305,5	56	53,5	20°
AED2N 1200-ID	Rp ³ / ₈	297	61	Rp 1/ ₈	315,5	57,5	Rp ³ / ₈	Rp ³ / ₈	297	337,5	61	58,5	20°
AED2N 2300-ID	Rp ³ / ₈	364	71,5	Rp 1/4	375,5	68,5	Rp 3/8	Rp ³ / ₈	364	406	71,5	69	22°
AED2N 4250-ID	Rp ³ / ₈	440,5	81	Rp 3/ ₈	446	79	Rp 3/8	Rp ³ / ₈	440,5	479,5	81	78,5	20°
AED2N 7800-ID	Rp ³ / ₈	527	98	Rp ³ / ₈	542	96	Rp ³ / ₈	Rp ³ / ₈	527	576	98	95,5	25°

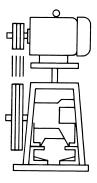
6 Threaded connection DIN 3852, shape Z


Standard flow direction
 Possible flow direction, for these purposes, the seal housing must be turned in case of shaft seal types P02/P12, G0S/G1S, G0T/G1T, G0Q/G1Q, G0D/G1D.

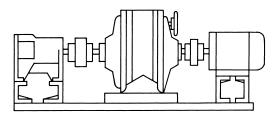

Driving possibilities


1 AED-ID with flexible coupling and electric motor

2 AED-ID with flexible coupling and geared motor



3 AED-ID with flexible coupling and internal combustion engine



6 AED-ID with flexible coupling and infinitely variable speed drive

4 AED-ID with V-belt drive, adjustable motor platform and motor situated behind the pump

5 AED-ID with V-belt drive, adjustable motor platform and motor situated above the pump

7 AED-ID with flexible coupling, gear box or variable speed gear, flexible coupling and motor

Further drive options (e.g. hydraulic or pneumatic drives) are possible.

Range of eccentric screw pumps	Series	Number of stages	Maximu	um output at $\Delta p = 0$ bar	Maximum del. pressure	Maximum viscosity
pp-			m³/h	l/min	bar	mPa∙s
	AE.E-ID	1,2	450	7500	10	300.000
	AE.N-ID	1,2	290	4850	16	270.000
	AE.H-ID	2,4	174	2900	24	270.000
	AEB.E-IE	1,2	174	2900	6	300.000
	AEB.N-IE	1,2	111	1850	12	270.000
	AEB4H-IE	4	12	200	24	270.000
	AED.E-ID	1	720	12000	8	250.000
	AED.N-ID	2	450	7500	16	225.000
	AEDB.E-IE	1	258	4300	6	250.000
	AEDB.N-IE	2	174	2900	12	225.000
	AE.NRG	1,2,4	30	500	20	1.000.000
	TECFLOW	1	186	3100	4	200.000
	SEZP	1,2	21	350	10	1.000.000
	SNZP	1,2	45	750	12	1.000.000
	SNZBP	1,2	45	750	12	1.000.000
	SSP	1,2	48	800	12	150.000
	SSBP	1,2	48	800	12	150.000
	SETP ①	1,2	140	2350	10	300.000
	SETBP	1,2	40	670	10	150.000
	SEFBP	1	40	670	6	150.000
	SMP	1	40	670	6	150.000
	SMP2	1	5,5	92	6	11.500
	AFP ANP	1 2	2,8 2,5	47 42	6 12	50.000 20.000
	ANP	2	2,5 2,5	42	12	20.000
	ASP		2,5	42	12	20.000
	ASBP	2	2,5	42	12	20.000
	ADP	2 2 3	2,0 0,6	10	12	20.000
	ADBP	3	0,6	10	12	20.000
	ACNP	1,2	29	480	12	150.000
	ACNBP	1,2	29	480	12	150.000
		-,			1) Special versions for high	
Peristaltic range	Series	Maximum output		Maximum del. pressure	Maximum viscosity	
			m³/h	l/min	bar	mPa∙s
	ASL		2,4	40	4	100.000
	ASH		60	1000	15	100.000
Macerator range	Series	Maximum throughput m³/h		Generated delivery hea m	ıd	
	AM S-1	80 at 3 % soli	ds	3		
	ABM S-1	80 at 3 % soli	ds	3		
	AM I-1	160 at 3 % soli		-		
	ABM I-1	80 at 3 % soli	ds	-		
Accessories	Pump accesso	ries: Stator setting	devices e	lectrical heaters bridge b	reakers	
	Pump accessories: Stator setting devices, electrical heaters, bridge breakers. Drivers: Electric motors, geared motors, variable speed transmissions, reduction gearboxes, internal combustion engines, pneumatic and hydraulic drives.					
	Transmission components: Couplings, V-belt transmissions, toothed belt transmissions, other types of transmission.					
	Base plates: Standard and special versions, wheeled trolleys, mounting flanges.					
	<u>Safety arrangements:</u> Bypass lines with safety or regulating valves, systems to guard against dry running (conductive, capacitive, thermal etc.).					
	Other accessories: Electrical, hydraulic and pneumatic control arrangements, filter systems, metering					
	equipment, seal liquid and circulating systems for shaft seals, valves, flanges, flexible pipes.					

Subject to technical alterations.

A Member of the COLFAX PUMP GROUP

ALLWEILER AG Business Unit Eccentric Screw Pumps Postfach 200123 · 46223 Bottrop Kirchhellener Ring 77–79 · 46244 Bottrop Germany Tel. +49 (0)2045 966-60 Fax +49 (0)2045 966-679 E-mail: service-ge@allweiler.de Internet: http://www.allweiler.com

VM 785 GB / 04.01 - Ident No. 795 764